Automata for the Modal mu-Calculus and related Results
نویسندگان
چکیده
The propositional μ-calculus as introduced by Kozen in [4] is considered. The notion of disjunctive formula is defined and it is shown that every formula is semantically equivalent to a disjunctive formula. For these formulas many difficulties encountered in the general case may be avoided. For instance, satisfiability checking is linear for disjunctive formulas. This kind of formula gives rise to a new notion of finite automaton which characterizes the expressive power of the μ-calculus over all transition systems.
منابع مشابه
Completeness for the modal μ-calculus: separating the combinatorics from the dynamics
The modal mu-calculus is a very expressive formalism extending basic modal logic with least and greatest fixpoint operators. In the seminal paper introducing the formalism in the shape known today, Dexter Kozen also proposed an elegant axiom system, and he proved a partial completeness result with respect to the Kripke-style semantics of the logic. The problem of proving Kozen’s axiom system co...
متن کاملCompleteness for μ-calculi: a coalgebraic approach
We set up a generic framework for proving completeness results for variants of the modal mucalculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus. Besides these main applications...
متن کاملTree Automata, Mu-calculus and Determinacy
We show that the propositional Mu-Calculus is equivalent in expressive p o wer to nite automata on inn-nite trees. Since complementation is trivial in the Mu-Calculus, our equivalence provides a radically sim-pliied, alternative proof of Rabin's complementation lemma for tree automata, which is the heart of one of the deepest decidability results. We also show h o w Mu-Calculus can be used to e...
متن کاملModel Checking the Full Modal Mu-Calculus for Infinite Sequential Processes
In this paper we develop a new elementary algorithm for model-checking infinite sequential processes, including context-free processes, pushdown processes, and regular graphs, that decides the full modal mu-calculus. Whereas the actual model checking algorithm results from considering conditional semantics together with backtracking caused by alternation, the corresponding correctness proof req...
متن کاملAn Automata Theoretic Decision Procedure for the Propositional Mu-Calculus
The propositional mu-calculus is a propositional logic of programs which incorporates a least fixpoint operator and subsumes the propositional dynamic logic of Fischer and Ladner, the infinite looping construct of Streett, and the game logic of Parikh. We give an elementary time decision procedure, using a reduction to the emptiness problem for automata on infinite trees. A small model theorem ...
متن کاملCompleteness for Coalgebraic Fixpoint Logic
We introduce an axiomatization for the coalgebraic fixed point logic which was introduced by Venema as a generalization, based on Moss’ coalgebraic modality, of the well-known modal mucalculus. Our axiomatization can be seen as a generalization of Kozen’s proof system for the modal mu-calculus to the coalgebraic level of generality. It consists of a complete axiomatization for Moss’ modality, e...
متن کامل